

15EC52

Fifth Semester B.E. Degree Examination, July/August 2021 Digital Signal Processing

Time: 3 hrs .

Note: Answer any FIVE full questions.

1 a. Compute the N-point DFT of the sequence, $x(n)=a . n \quad 0 \leq n \leq N-1$.
(08 Marks)
b. Obtain the relationship between DFT and Z-transform.
(04 Marks)
c. Find the Inverse DFT of the sequence $X(K)=(2,1+j, 0,1-j)$

2 a. Compute the 8 -point DFT of the sequence $x(n)$ given below:
$x(n)=(1,1,1,1,0,0,0,0)$.
(06 Marks)
b. Compute the N -point DFT of the sequence,
$x(n)=a^{n}, 0 \leq n \leq N-1$.
(04 Marks)
c. Find the IDFT of 4 -point sequence,
$X(K)=(4,-\mathrm{j} 2,0, \mathrm{j} 2)$ using the DFT.
(06 Marks)
3 a. In many signal processing applications, we often multifly an infinite length sequence by a window of length N . The time-domain expression for this window is,
$\mathrm{w}(\mathrm{n})=\frac{1}{2}+\frac{1}{2} \cos \left[\frac{2 \pi}{\mathrm{~N}}\left(\mathrm{n}-\frac{\mathrm{N}}{2}\right)\right]$
What is the DFT of the windowed sequence, $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}) \mathrm{w}(\mathrm{n})$? Keep the answer in terms of $\mathrm{X}(\mathrm{n})$.
(07 Marks)
b. Let $\mathrm{x}(\mathrm{n})$ be a real sequence of length N and its N -point DFT is given by $\mathrm{X}(\mathrm{K})$. Show that :
(i) $\mathrm{X}(\mathrm{N}-\mathrm{K})=\mathrm{X}^{*}(\mathrm{~K})$.
(ii) $\mathrm{X}(0)$ is real, and
(iii) If N is Even, $\mathrm{X}\left(\frac{\mathrm{N}}{2}\right)$ is real.
(09 Marks)

4 a. Let $\mathrm{x}(\mathrm{n})=(1,2,0,3,-2,4,7,5)$. Evaluate the following :
(i) $\mathrm{X}(0)$
(ii) $\mathrm{X}(4)$
(iii) $\sum_{\mathrm{K}=0}^{7} \mathrm{X}(\mathrm{K})$
(iv) $\sum_{K=0}^{7}|\mathrm{X}(\mathrm{K})|^{2}$
(08 Marks)
b. Perform $\mathrm{x}(\mathrm{n})^{*} \mathrm{~h}(\mathrm{n}), 0 \leq \mathrm{n} \leq 11$ for the sequence $\mathrm{x}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$ given below using overlap-add based fast convolution technique. Choose appropriately number of points of circular convolution.
$\mathrm{h}(\mathrm{n})=(1,1,1)$
and $x(n)=(1,2,0,-3,4,2,-1,1,-2,3,2,1,-3)$
(08 Marks)
5 a. Find the 4 point circular convolution of $x(n)$ and $h(n)$ given in Fig. Q5 (a) using radix-2 DIF-FFT algorithm.
(08 Marks)

Fig. Q5 (a)
b. Find the 8 -point DFT of sequence $\mathrm{x}(\mathrm{n}), \mathrm{x}(\mathrm{n})=(1,1,1,1,0,0,0,0)$ using DIT-FFT radix-2 algorithm. Use the butterfly diagram.

6 a. Derive the DIT-FFT algorithm.
(08 Marks)
b. Find number of complex multiplications and complex additions in finding 512 point DFT.
c. Find the 4-point real sequence $x(n)$ if its 4-point DFT samples are $X(0)=6, X(1)=-2+j 2$, $\mathrm{X}(2)=-2$. Use DIF-FFT algorithm.
(06 Marks)

7 a. Draw the block diagrams of direct form-I and direct form-II realization for a digital IIR filter described by the system function,
$\mathrm{H}(\mathrm{z})=\frac{8 \mathrm{z}^{3}-4 \mathrm{z}^{2}+11 \mathrm{z}-2}{\left(\mathrm{z}-\frac{1}{4}\right)\left(\mathrm{z}^{2}-\mathrm{z}+\frac{1}{2}\right)}$.
(08 Marks)
b. Obtain a parallel realization for the system described by,
$H(z)=\frac{\left(1+z^{-1}\right)\left(1+2 z^{-1}\right)}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)\left(1+\frac{1}{8} z^{-1}\right)}$.
(08 Marks)

8 a. Design an analog bandpass filter to meet the following frequency domain specifications:
(i) $\mathrm{a}-3.0103 \mathrm{~dB}$ upper and lower cut-off frequency of 50 Hz and 20 kHz .
(ii) a stopband attenuation of atleast 20 dB at 20 Hz and 45 kHz and
(iii) a monotonic frequency response.
(08 Marks)
b. Let $H_{a}(s)=\frac{s+a}{(s+a)^{2}+b^{2}}$ be a casual second order transfer function. Show that the casual second order digital function $\mathrm{H}(\mathrm{z})$ is obtained from $\mathrm{H}_{\mathrm{a}}(\mathrm{s})$ through impulse invariance method is given by,
$H(z)=\frac{1-e^{-a T} \cos b T z^{-1}}{1-2 \cos b T e^{-2 T} z^{-1}+e^{-2 a T} z^{-2}}$.
(08 Marks)

9 a. The desired frequency response of a low pass filter is given by,
$H_{d}\left(e^{j w}\right)=H_{d}(w)=\left\{\begin{array}{ll}e^{-j 3 w}, & |w|<\frac{3 \pi}{4} \\ 0, & \frac{3 \pi}{4}<|w|<\pi\end{array}\right.$.
Determine the frequency response of the FIR filter if Hamming window is used with $\mathrm{N}=7$.
(08 Marks)
b. Determine the co-efficients $\mathrm{K}_{\mathfrak{m}}$ of the lattice filter corresponding to FIR filter described by the system function,
$\mathrm{H}(\mathrm{z})=1+2 \mathrm{z}^{-1}+\frac{1}{3} \mathrm{z}^{-2}$
Also, draw the corresponding second order lattice structure.
(08 Marks)

10 a. A low pass filter is to be designed with the following desired frequency response:
$H_{d}\left(\mathrm{e}^{\mathrm{jw}}\right)=\mathrm{H}_{\mathrm{d}}(\mathrm{w})=\left\{\begin{array}{ll}\mathrm{e}^{-\mathrm{j} 2 \mathrm{w}}, & |\mathrm{w}|<\frac{\pi}{4} \\ 0, & \frac{\pi}{4}<|\mathrm{w}|<\pi\end{array}\right.$.
Determine the filter co-efficients $\mathrm{h}_{\mathrm{d}}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$ if $\mathrm{w}(\mathrm{n})$ is a rectangular window defined as follows:
$\mathrm{W}_{\mathrm{R}}(\mathrm{n})= \begin{cases}1, & 0 \leq \mathrm{n} \leq 4 \\ 0, & \text { otherwise }\end{cases}$
Also find the frequency response, $\mathrm{H}(\mathrm{w})$ of the resulting FIR filter.
(06 Marks)
b. Realize the linear-phase FIR filter having the following impulse response.
$\mathrm{h}(\mathrm{n})=\delta(\mathrm{n})+\frac{1}{4} \delta(\mathrm{n}-1)-\frac{1}{8} \delta(\mathrm{n}-2)+\frac{1}{4} \delta(\mathrm{n}-3)+\delta(\mathrm{n}-4)$.
(06 Marks)
c. Realize an FIR filter with impulse response $h(n)$ given by,
$\mathrm{h}(\mathrm{n})=\left(\frac{1}{2}\right)^{\mathrm{n}}[\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-4)]$
Using direct form -I .

